Some Ionic and Bioelectric Properties of the Ameba Chaos chaos

Author:

Bruce David L.1,Marshall John M.1

Affiliation:

1. From the Departments of Anesthesia and Anatomy, School of Medicine, University of Pennsylvania, Philadelphia.

Abstract

Ionic relationships in the giant ameba Chaos chaos were studied by analyzing bulk preparations of ground cytoplasm for K, Na, and Cl. Ion levels under normal conditions were compared with the levels in cells exposed to varying concentrations of different ions, for varying times and at different temperatures. By standard intracellular electrode techniques, the bioelectric potential, electrical resistance, and rectifying properties of the plasmalemma were studied on intact cells in media of different composition. The results obtained, when related to evidence from other studies on ion fluxes and osmotic relationships, suggest the following concept of ionic regulation in Chaos chaos. In the absence of active membrane uptake, the plasmalemma is essentially impermeable to anions but permeable to both K and Na, which enter passively. In the cold the cell does not discriminate between K and Na, the cytoplasmic level of K + Na is determined by a Donnan distribution, and osmotic imbalance leads to slow swelling. At normal temperatures active processes are added: Na and water are pumped out by the contractile vacuole system; Cl is accumulated, along with the colloid components of the cytoplasm, only during feeding and growth, which depend upon membrane uptake and intracellular membrane transformations. There is no evidence for active transport of any ion species directly across the plasmalemma.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3