Myosin and tropomyosin–troponin complementarily regulate thermal activation of muscles

Author:

Ishii Shuya12ORCID,Oyama Kotaro12ORCID,Kobirumaki-Shimozawa Fuyu2ORCID,Nakanishi Tomohiro23ORCID,Nakahara Naoya4ORCID,Suzuki Madoka5ORCID,Ishiwata Shin’ichi6ORCID,Fukuda Norio2ORCID

Affiliation:

1. Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology 1 , Gunma, Japan

2. The Jikei University School of Medicine 2 Department of Cell Physiology, , Tokyo, Japan

3. The Jikei University School of Medicine 3 Department of Anesthesiology, , Tokyo, Japan

4. The Jikei University School of Medicine 4 Department of Molecular Physiology, , Tokyo, Japan

5. Institute for Protein Research, Osaka University 5 , Osaka, Japan

6. Waseda University 6 Department of Physics, Faculty of Science and Engineering, , Tokyo, Japan

Abstract

Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the “on–off” equilibrium of the thin filament state toward the “on” state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or β-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on β-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin–troponin within the body temperature range, depending on the physiological demands of various circumstances.

Funder

Japan Society for the Promotion of Science

Naito Foundation

Yamada Science Foundation

Mitsubishi Foundation

Institute for Protein Research, Osaka University

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3