Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process

Author:

Neher Erwin1ORCID

Affiliation:

1. Max Planck Institute for Multidisciplinary Sciences 1 , Göttingen, Germany

Abstract

Studies on synaptic proteins involved in neurotransmitter release often aim at distinguishing between their roles in vesicle priming (the docking of synaptic vesicles to the plasma membrane and the assembly of a release machinery) as opposed to the process of vesicle fusion. This has traditionally been done by estimating two parameters, the size of the pool of fusion-competent vesicles (the readily releasable pool, RRP) and the probability that such vesicles are released by an action potential, with the aim of determining how these parameters are affected by molecular perturbations. Here, it is argued that the assumption of a homogeneous RRP may be too simplistic and may blur the distinction between vesicle priming and fusion. Rather, considering priming as a dynamic and reversible multistep process allows alternative interpretations of mutagenesis-induced changes in synaptic transmission and suggests mechanisms for variability in synaptic strength and short-term plasticity among synapses, as well as for interactions between short- and long-term plasticity. In many cases, assigned roles of proteins or causes for observed phenotypes are shifted from fusion- to priming-related when considering multistep priming. Activity-dependent enhancement of priming is an essential element in this alternative view and its variation among synapse types can explain why some synapses show depression and others show facilitation at low to intermediate stimulation frequencies. Multistep priming also suggests a mechanism for frequency invariance of steady-state release, which can be observed in some synapses involved in sensory processing.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3