Modulation by stimulation rate of basal and cAMP-elevated Ca2+ channel current in guinea pig ventricular cardiomyocytes.

Author:

Kaspar S P1,Pelzer D J1

Affiliation:

1. Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.

Abstract

The modulation of L-type Ca2+ current (ICa) by changes in stimulation frequency was investigated in single ventricular cardiomyocytes isolated from guinea pig hearts. Electrical recordings were carried out at 21-25 degrees C and at 33-37 degrees C with the whole-cell patch clamp method, under K(+)-free conditions. A comparison is made between the response to frequency changes for ICa in the basal state and after the application of drugs which elevate the level of adenosine-3',5'-cyclic monophosphate (cAMP) within the cells. Peak basal ICa was reduced with an increase in stimulation rate from 0.5 Hz to 1, 2, 3, 4, or 5 Hz. This frequency-induced reduction of ICa was enhanced by reduced temperature, was unchanged when Na+ or Ba2+ carried the basal Ca2+ channel current, and was greatly enhanced after elevating cAMP levels with forskolin, isoprenaline, or 8-(4-chlorophenylthio)-cyclic AMP. We examined the mechanism of the enhancement of the frequency-induced reduction of ICa by cAMP, and found two conditions which abolished it: (a) application of isoprenaline when Na+ carried the Ca2+ channel current in Ca(2+)-free solution, or (b) application of 3-isobutyl-1-methylxanthine, a broad-spectrum phosphodiesterase inhibitor. It was further shown that an elevation of both ICa and cAMP (induced by isoprenaline), and not an increase of ICa alone (induced by Bay K 8644), is required to produce the extra component of reduction by frequency. It is concluded that Ca2+ entry results in feedback regulation of ICa, through the activation of Ca(2+)-dependent phosphodiesterase(s). This is important in the context of sympathetic stimulation, which produces the companion conditions of an elevated heart rate and increases in cAMP levels and Ca2+ entry.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3