A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate.

Author:

Han X1,Shimoni Y1,Giles W R1

Affiliation:

1. Department of Medical Physiology and Medicine, University of Calgary, Alberta, Canada.

Abstract

The biochemical signaling pathways involved in nitric oxide (NO)-mediated cholinergic inhibition of L-type Ca2+ current (ICa[L]) were investigated in isolated primary pacemaker cells from the rabbit sinoatrial node (SAN) using the nystatin-perforated whole-cell voltage clamp technique. Carbamylcholine (CCh; 1 microM), a stable analogue of acetylcholine, significantly inhibited ICa(L) after it had been augmented by isoproterenol (ISO; 1 microM). CCh also activated an outward K+ current, IK(ACh). Both of these effects of CCh were blocked completely by atropine. Preincubation of the SAN cells with L-nitro-arginine methyl ester (L-NAME; 0.2-1 mM), which inhibits NO synthase (NOS), abolished the CCh-induced attenuation of ICa(L) but had no effect on IK(ACh). Coincubation of cells with both L-NAME and the endogenous substrate of NOS, L-arginine (1 nM), restored the CCh-induced attenuation of ICa(L), indicating that L-NAME did not directly interfere with the muscarinic action of CCh on ICa(L). In the presence of ISO the CCh-induced inhibition of ICa(L) could be mimicked by the NO donor 3-morpholino-sydnonimine (SIN-1; 0.1 mM). SIN-1 had no effect on its own or after a maximal effect of CCh had developed, indicating that it does not inhibit ICa(L) directly. SIN-1 failed to activate IK(ACh), demonstrating that it did not activate muscarinic receptors. Both CCh and NO are known to activate guanylyl cyclase and elevate intracellular cGMP. External application of methylene blue (10 microM), which interferes with the ability of NO to activate guanylyl cyclase, blocked the CCh-induced attenuation of ICa(L). However, it also blocked the activation of IK(ACh), suggesting an additional effect on muscarinic receptors or G proteins. To address this, a separate series of experiments was performed using conventional whole-cell recordings with methylene blue in the pipette. Under these conditions, the CCh-induced attenuation of ICa(L) was blocked, but the activation of IK(ACh) was still observed. Methylene blue also blocked the SIN-1-induced decrease in ICa(L). 6-anilino-5,8-quinolinedione (LY83583; 30 microM), an agent known to decrease both basal and CCh-stimulated cGMP levels, prevented the inhibitory effects of both CCh and SIN-1 on ICa(L), but had no effect on the activation of IK(ACh) by CCh. In combination, these results show that CCh- and NO-induced inhibition of ICa(L) is mediated by cGMP.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3