Affiliation:
1. Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
Abstract
The mechanism by which the phenylalkylamines, verapamil and D600, and related compounds, block inactivating delayed rectifier K+ currents in rat alveolar epithelial cells, was investigated using whole-cell tight-seal recording. Block by phenylalkylamines added to the bath resembles state-dependent block of squid K+ channels by internally applied quarternary ammonium ions (Armstrong, C.M. 1971. Journal of General Physiology. 58:413-437): open channels are blocked preferentially, increased [K+]o accelerates recovery from block, and recovery occurs mainly through the open state. Slow recovery from block is attributed to the existence of a blocked-inactivated state, because recovery was faster in three situations where recovery from inactivation is faster: (a) at high [K+]o, (b) at more negative potentials, and (c) in cells with type l K+ channels, which recover rapidly from inactivation. The block rate was used as a bioassay to reveal the effective concentration of drug at the block site. When external pH, pHo, was varied, block was much faster at pHo 10 than pHo 7.4, and very slow at pHo 4.5. The block rate was directly proportional to the concentration of neutral drug in the bath, suggesting that externally applied drug must enter the membrane in neutral form to reach the block site. High internal pH (pHi 10) reduced the apparent potency of externally applied phenylalkylamines, suggesting that the cationic form of these drugs blocks K+ channels at an internal site. The permanently charged analogue D890 blocked more potently when added to the pipette than to the bath. However, lowering pHi to 5.5 did not enhance block by external drug, and tertiary phenylalkylamines added to the pipette solution blocked weakly. This result can be explained if drug diffuses out of the cell faster than it is delivered from the pipette, the block site is reached preferentially via hydrophobic pathways, or both. Together, the data indicate the neutral membrane-bound drug blocks K+ channels more potently than intracellular cationic drug. Neutral drug has rapid access to the receptor, where block is stabilized by protonation of the drug from the internal solution. In summary, externally applied phenylalkylamines block open or inactivated K+ channels by partitioning into the cell membrane in neutral form and are stabilized at the block site by protonation.
Publisher
Rockefeller University Press
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献