Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase.

Author:

Wang W H1,Geibel J1,Giebisch G1

Affiliation:

1. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.

Abstract

The effects of inhibition of the basolateral Na(+)-K(+)-ATPase (pump) on the apical low-conductance K+ channel of principal cells in rat cortical collecting duct (CCD) were studied with patch-clamp techniques. Inhibition of pump activity by removal of K+ from the bath solution or addition of strophanthidin reversibly reduced K+ channel activity in cell-attached patches to 36% of the control value. The effect of pump inhibition on K+ channel activity was dependent on the presence of extracellular Ca2+, since removal of Ca2+ in the bath solution abolished the inhibitory effect of 0 mM K+ bath. The intracellular [Ca2+] (measured with fura-2) was significantly increased, from 125 nM (control) to 335 nM (0 mM K+ bath) or 408 nM (0.2 mM strophanthidin), during inhibition of pump activity. In contrast, cell pH decreased only moderately, from 7.45 to 7.35. Raising intracellular Ca2+ by addition of 2 microM ionomycin mimicked the effect of pump inhibition on K+ channel activity. 0.1 mM amiloride also significantly reduced the inhibitory effect of the K+ removal. Because the apical low-conductance K channel in inside-out patches is not sensitive to Ca2+ (Wang, W., A. Schwab, and G. Giebisch, 1990. American Journal of Physiology. 259:F494-F502), it is suggested that the inhibitory effect of Ca2+ is mediated by a Ca(2+)-dependent signal transduction pathway. This view was supported in experiments in which application of 200 nM staurosporine, a potent inhibitor of Ca(2+)-dependent protein kinase C (PKC), markedly diminished the effect of the pump inhibition on channel activity. We conclude that a Ca(2+)-dependent protein kinase such as PKC plays a key role in the downregulation of apical low-conductance K+ channel activity during inhibition of the basolateral Na(+)-K(+)-ATPase.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3