Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.

Author:

Granzier H L1,Wang K1

Affiliation:

1. Clayton Foundation Biochemical Institute, Department of Chemistry and Biochemistry, University of Texas, Austin 78712.

Abstract

The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment with the actin-severving protein gelsolin. Thin filament, removal had no effect on passive tension, indicating that the C filament and the actin filament are mechanically independent and that passive tension is developed by the C filament in response to sarcomere stretch. Passive tension increased steeply with sarcomere length until an elastic limit was reached at only 6-7% sarcomere extension, which corresponds to an extension of 350% of the C filament. The passive tension-length relation of insect flight muscle was analyzed using a segmental extension model of passive tension development (Wang, K, R. McCarter, J. Wright, B. Jennate, and R Ramirez-Mitchell. 1991. Proc. Natl. Acad. Sci. USA. 88:7101-7109). Thin filament removal greatly depressed high frequency passive stiffness (2.2 kHz) and eliminated the ionic strength sensitivity of passive stiffness. It is likely that the passive stiffness component that is removed by gelsolin is derived from weak-binding cross-bridges, while the component that remains is derived from the C filament. Our results indicate that a significant number of weak-binding cross-bridges exist in passive insect muscle at room temperature and at an ionic strength of 195 mM. Analysis of rigor muscle indicated that while rigor tension is entirely actin based, rigor stiffness contains a component that resists gelsolin treatment and is therefore likely to be C filament based. Active tension and active stiffness of unextracted fibers were directly proportional to passive tension before activation. Similarly, passive stiffness due to weak bridges also increased linearly with passive tension, up to a limit. These correlations lead us to propose a stress-activation model for insect flight muscle in which passive tension is a prerequisite for the formation of both weak-binding and strong-binding cross-bridges.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3