The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use-dependent block by 4-aminopyridine.

Author:

Campbell D L1,Qu Y1,Rasmusson R L1,Strauss H C1

Affiliation:

1. Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use-dependent" behavior that was inferred from: (a) development of tonic block at hyperpolarized potentials; (b) inhibition of development of tonic block at depolarized potentials; (c) appearance of "crossover phenomena" in which the peak current is delayed in the presence of 4-AP at depolarized potentials; (d) relief of block at depolarized potentials which is concentration dependent and parallels steady-state inactivation for low 4-AP concentrations (V1/2 approximately -10 mV in 0.1 mM 4-AP) and steady-state activation at higher concentrations (V1/2 = +7 mV in 1 mM 4-AP, +15 mV in 10 mM 4-AP); and (e) reassociation of 4-AP at hyperpolarized potentials. No evidence for interaction of 4-AP with either the open or inactivated state of the I(to) channel was obtained from measurements of kinetics of recovery and deactivation in the presence of 0.5-1.0 mM 4-AP. At hyperpolarized potentials (-30 to -90 mV) 10 mM 4-AP associates slowly (time constants ranging from approximately 800 to 1,300 ms) with the closed states of the channel (apparent Kd approximately 0.2 mM). From -90 to -20 mV the affinity of the I(to) channel for 4-AP appears to be voltage insensitive; however, at depolarized potentials (+20 to +100 mV) 4-AP dissociates with time constants ranging from approximately 350 to 150 ms. Consequently, the properties of 4-AP binding to the I(to) channel undergo a transition in the range of potentials over which channel activation and inactivation occurs (-30 to +20 mV). We propose a closed state model of I(to) channel gating and 4-AP binding kinetics, in which 4-AP binds to three closed states. In this model 4-AP has a progressively lower affinity as the channel approaches the open state, but has no intrinsic voltage dependence of binding.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3