Affiliation:
1. Department of Physiology and Biophysics, University of Health Science, Chicago Medical School, Illinois 60064.
Abstract
Pre-steady-state transient currents (1986. Nakao, M., and D. C. Gadsby. Nature [Lond.]. 323:628-630) mediated by the Na/K pump were measured under conditions for Na/Na exchange (K-free solution) in voltage-clamped Xenopus oocytes. Signal-averaged (eight times) current records obtained in response to voltage clamp steps over the range -160 to +60 mV after the addition of 100 microM dihydroouabain (DHO) or removal of external Na (control) were subtracted from test records obtained before the solution change. A slow component of DHO- or Na-sensitive difference current was consistently observed and its properties were analyzed. The quantity of charge moved was well described as a Boltzmann function of membrane potential with an apparent valence of 1.0. The relaxation rate of the current was fit by the sum of an exponentially voltage-dependent reverse rate coefficient plus a voltage-independent forward rate constant. The quantity of charge moved at the on and off of each voltage pulse was approximately equal except at extreme negative values of membrane potential where the on charge tended to be less than the off. The midpoint voltage of the charge distribution function (Vq) was shifted by -24.8 +/- 1.7 mV by changing the external [Na] in the test condition from 90 to 45 mM and by +14.7 +/- 1.7 mV by changing the test [Na] from 90 to 120 mM. A pseudo three-state model of charge translocation is discussed in which Na+ is bound and occluded at the internal face of the enzyme and is released into an external-facing high field access channel (ion well). The model predicts a shift of the charge distribution function to more hyperpolarized potentials as extracellular [Na] is lowered; however, several features of the data are not predicted by the model.
Publisher
Rockefeller University Press
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献