Rate-limiting steps in the beta-adrenergic stimulation of cardiac calcium current.

Author:

Frace A M1,Méry P F1,Fischmeister R1,Hartzell H C1

Affiliation:

1. Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30033.

Abstract

Fast-flow perfusion and flash photolysis of caged compounds were used to study the activation kinetics of L-type calcium current (ICa) in frog cardiac myocytes. Rapid exposure to isoproterenol (Iso) for 1 s or approximately 1 min produced similar kinetics of increase in ICa with an initial lag period of approximately 3 s, followed by a monophasic rise in current with a half-time of approximately 20 s. Epinephrine, as well as caged Iso, produced increases with similar kinetics. The fact that ICa increased significantly even after short Iso applications suggests that agonist binding to the receptor is rapid and that the increase in ICa is independent of free agonist. To dissect the kinetic contributions of various steps in the cAMP-phosphorylation cascade, the kinetics of the responses to caged cAMP and caged GTP gamma S and fast perfusion of forskolin, acetylcholine, and propranolol were compared. The response to caged cAMP exhibited no lag period, but otherwise increased at a rate similar to that produced by Iso and reached a peak at approximately 40 s after flash photolysis. This suggests that the lag period itself is due to a step before cAMP accumulation, but that activation of protein kinase and phosphorylation of the calcium channel are relatively slow. A lag period was also observed when ICa was stimulated by flash photolysis of caged GTP gamma S and when adenylyl cyclase was activated directly by rapid perfusion with forskolin. The lag period observed with forskolin may be due to slow binding of forskolin. The lag period was not due to the time required for cAMP to reach a threshold concentration, because a similar lag was observed in response to Iso in cells having ICa previously stimulated submaximally by internal perfusion with a low concentration of cAMP. These results suggest that the lag period can be attributed to a step associated with activation of adenylyl cyclase and cAMP accumulation.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3