Electrically Triggered All-or-None Ca2+-Liberation during Action Potential in the Giant Alga Chara

Author:

Wacke Michael,Thiel Gerhard1

Affiliation:

1. Albrecht-von-Haller Institute for Plant Sciences, Plant Biophysics, University of Göttingen, 37073 Göttingen, Germany

Abstract

Electrically triggered action potentials in the giant alga Chara corallina are associated with a transient rise in the concentration of free Ca2+ in the cytoplasm (Ca2+cyt). The present measurements of Ca2+cyt during membrane excitation show that stimulating pulses of low magnitude (subthreshold pulse) had no perceivable effect on Ca2+cyt. When the strength of a pulse exceeded a narrow threshold (suprathreshold pulse) it evoked the full extent of the Ca2+cyt elevation. This suggests an all-or-none mechanism for Ca2+ mobilization. A transient calcium rise could also be induced by one subthreshold pulse if it was after another subthreshold pulse of the same kind after a suitable interval, i.e., not closer than a few 100 ms and not longer than a few seconds. This dependency of Ca2+ mobilization on single and double pulses can be simulated by a model in which a second messenger is produced in a voltage-dependent manner. This second messenger liberates Ca2+ from internal stores in an all-or-none manner once a critical concentration (threshold) of the second messenger is exceeded in the cytoplasm. The positive effect of a single suprathreshold pulse and two optimally spaced subthreshold pulses on Ca2+ mobilization can be explained on the basis of relative velocity for second messenger production and decomposition as well as the availability of the precursor for the second messenger production. Assuming that inositol-1,4,5,-trisphosphate (IP3) is the second messenger in question, the present data provide the major rate constants for IP3 metabolism.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3