Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. Interactions between toxin binding and channel gating.

Author:

Cohen C J,Bean B P,Colatsky T J,Tsien R W

Abstract

Tetrodotoxin (TTX) block of cardiac sodium channels was studied in rabbit Purkinje fibers using a two-microelectrode voltage clamp to measure sodium current. INa decreases with TTX as if one toxin molecule blocks one channel with a dissociation constant KD approximately equal to 1 microM. KD remains unchanged when INa is partially inactivated by steady depolarization. Thus, TTX binding and channel inactivation are independent at equilibrium. Interactions between toxin binding and gating were revealed, however, by kinetic behavior that depends on rates of equilibration. For example, frequent suprathreshold pulses produce extra use-dependent block beyond the tonic block seen with widely spaced stimuli. Such lingering aftereffects of depolarization were characterized by double-pulse experiments. The extra block decays slowly enough (tau approximately equal to 5 s) to be easily separated from normal recovery from inactivation (tau less than 0.2 s at 18 degrees C). The amount of extra block increases to a saturating level with conditioning depolarizations that produce inactivation without detectable activation. Stronger depolarizations that clearly open channels give the same final level of extra block, but its development includes a fast phase whose voltage- and time-dependence resemble channel activation. Thus, TTX block and channel gating are not independent, as believed for nerve. Kinetically, TTX resembles local anesthetics, but its affinity remains unchanged during maintained depolarization. On this last point, comparison of our INa results and earlier upstroke velocity (Vmax) measurements illustrates how much these approaches can differ.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3