A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages.

Author:

Kapus A1,Romanek R1,Qu A Y1,Rotstein O D1,Grinstein S1

Affiliation:

1. Division of Cell Biology, Hospital for Sick Children, Toronto, Canada.

Abstract

Phagocytes generate large amounts of metabolic acid during activation. Therefore, the presence of a conductive pathway capable of H+ extrusion has been suggested (Henderson, L. M., J. B. Chappell, and O. T. G. Jones. 1987. Biochemical Journal. 246:325-329). In this report, electrophysiological and fluorimetric methods were used to probe the existence of a H+ conductance in murine peritoneal macrophages. In suspended cells, recovery of the cytosolic pH (pHi) from an acid-load in Na+ and HCO3(-)-free medium was detectable in depolarizing but not in hyperpolarizing media. The rate of alkalinization was potentiated by the rheogenic ionophore valinomycin. These findings are consistent with the existence of a conductive H+ (equivalent) pathway. This notion was confirmed by patch-clamping and fluorescence ratio measurements of single adherent cells. When voltage was clamped in the whole-cell configuration, depolarizing pulses induced a sizable outward current which was accompanied by cytosolic alkalinization. Several lines of evidence indicate that H+ (equivalents) carry this current: (a) the conductance was unaffected by substitution of the major ionic constituents of the intra-and/or extracellular media, (b) the reversal potential of the tail currents approached the H+ equilibrium potential; and (c) the voltage-induced currents and pHi changes were both Zn2+ sensitive and had similar time course and potential dependence. The peak whole-cell current displayed marked outward rectification and was exquisitely H+ selective. At constant voltage, the H+ permeability was increased by lowering pHi but was inhibited by extracellular acidification. Together with the voltage dependence of the conductance, these features ensure that H+ extrusion can occur during activation, while potentially deleterious acid uptake is precluded. The properties of the conductance appear ideally suited for pHi regulation during phagocyte activation, because these cells undergo a sustained depolarization and an incipient acidification when stimulated. Comparison of the magnitude of the current with the amount of metabolic acid generated during macrophage activation indicates that the conductance is sufficiently large to contribute to the H+ extrusion required for maintenance of pHi.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3