Preventing Voltage-dependent Gating of Anthrax Toxin Channels Using Engineered Disulfides

Author:

Anderson Damon S.1,Blaustein Robert O.12

Affiliation:

1. Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111

2. Department of Neuroscience, Tufts Medical School, Boston, MA 02111

Abstract

The channel-forming component of anthrax toxin, (PA63)7, is a heptameric water-soluble protein at neutral pH, but under acidic conditions it spontaneously inserts into lipid bilayers to form a 14-stranded β-barrel ion-conducting channel. This channel plays a vital role in anthrax pathogenesis because it serves as a conduit for the membrane translocation of the two enzymatic components of anthrax toxin, lethal factor and edema factor. Anthrax channels open and close in response to changes in transmembrane voltage, a property shared by several other pore-forming toxins. We have discovered an unexpected phenomenon in cysteine-substituted channels that provides a window into this gating process: their normal voltage-dependent gating can be abolished by reaction with methanethiosulfonate (MTS) reagents or exposure to oxidizing conditions. Remarkably, this perturbation is seen with cysteines substituted at sites all along the ∼100 Å length of the channel's β-barrel. In contrast, reaction with N-ethylmaleimide, a thiol-reactive compound that does not form a mixed disulfide, does not affect gating at any of the sites tested. These findings, coupled with our biochemical detection of dimers, have led us to conclude that MTS reagents are catalyzing the formation of intersubunit disulfide bonds that lock channels in a conducting state, and that voltage gating requires a conformational change that involves the entire β-barrel.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3