Affiliation:
1. Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822
2. Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI 96813
Abstract
TRPM2 is a calcium-permeable nonselective cation channel that is opened by the binding of ADP-ribose (ADPR) to a C-terminal nudix domain. Channel activity is further regulated by several cytosolic factors, including cyclic ADPR (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP), Ca2+ and calmodulin (CaM), and adenosine monophosphate (AMP). In addition, intracellular ions typically used in patch-clamp experiments such as Cs+ or Na+ can alter ADPR sensitivity and voltage dependence, complicating the evaluation of the roles of the various modulators in a physiological context. We investigated the roles of extra- and intracellular Ca2+ as well as CaM as modulators of ADPR-induced TRPM2 currents under more physiological conditions, using K+-based internal saline in patch-clamp experiments performed on human TRPM2 expressed in HEK293 cells. Our results show that in the absence of Ca2+, both internally and externally, ADPR alone cannot induce cation currents. In the absence of extracellular Ca2+, a minimum of 30 nM internal Ca2+ is required to cause partial TRPM2 activation with ADPR. However, 200 μM external Ca2+ is as efficient as 1 mM Ca2+ in TRPM2 activation, indicating an external Ca2+ binding site important for proper channel function. Ca2+ facilitates ADPR gating with a half-maximal effective concentration of 50 nM and this is independent of extracellular Ca2+. Furthermore, TRPM2 currents inactivate if intracellular Ca2+ levels fall below 100 nM irrespective of extracellular Ca2+. The facilitatory effect of intracellular Ca2+ is not mimicked by Mg2+, Ba2+, or Zn2+. Only Sr2+ facilitates TRPM2 as effectively as Ca2+, but this is due to Sr2+-induced Ca2+ release from internal stores rather than a direct effect of Sr2+ itself. Together, these data demonstrate that cytosolic Ca2+ regulates TRPM2 channel activation. Its facilitatory action likely occurs via CaM, since the addition of 100 μM CaM to the patch pipette significantly enhances ADPR-induced TRPM2 currents at fixed [Ca2+]i and this can be counteracted by calmidazolium. We conclude that ADPR is responsible for TRPM2 gating and Ca2+ facilitates activation via calmodulin.
Publisher
Rockefeller University Press
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献