Electrostatic Interaction of Internal Mg2+ with Membrane PIP2 Seen with KCNQ K+ Channels

Author:

Suh Byung-Chang1,Hille Bertil1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195

Abstract

Activity of KCNQ (Kv7) channels requires binding of phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane. We give evidence that Mg2+ and polyamines weaken the KCNQ channel–phospholipid interaction. Lowering internal Mg2+ augmented inward and outward KCNQ currents symmetrically, and raising Mg2+ reduced currents symmetrically. Polyvalent organic cations added to the pipette solution had similar effects. Their potency sequence followed the number of positive charges: putrescine (+2) < spermidine (+3) < spermine (+4) < neomycin (+6) < polylysine (≫+6). The inhibitory effects of Mg2+ were reversible with sequential whole-cell patching. Internal tetraethylammonium ion (TEA) gave classical voltage-dependent block of the pore with changes of the time course of K+ currents. The effect of polyvalent cations was simpler, symmetric, and without changes of current time course. Overexpression of phosphatidylinositol 4-phosphate 5-kinase Iγ to accelerate synthesis of PIP2 attenuated the sensitivity to polyvalent cations. We suggest that Mg2+ and other polycations reduce the currents by electrostatic binding to the negative charges of PIP2, competitively reducing the amount of free PIP2 available for interaction with channels. The dose–response curves could be modeled by a competition model that reduces the pool of free PIP2. This mechanism is likely to modulate many other PIP2-dependent ion channels and cellular processes.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3