Roles of GRK and PDE4 Activities in the Regulation of β2 Adrenergic Signaling

Author:

Xin Wenkuan1,Tran Tuan M.2,Richter Wito3,Clark Richard B.2,Rich Thomas C.1

Affiliation:

1. Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, AL 36688

2. Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030

3. Department of Gynecology and Obstetrics, Division of Reproductive Biology, Stanford University School of Medicine, Stanford, CA 94305

Abstract

An important focus in cell biology is understanding how different feedback mechanisms regulate G protein–coupled receptor systems. Toward this end we investigated the regulation of endogenous β2 adrenergic receptors (β2ARs) and phosphodiesterases (PDEs) by measuring cAMP signals in single HEK-293 cells. We monitored cAMP signals using genetically encoded cyclic nucleotide-gated (CNG) channels. This high resolution approach allowed us to make several observations. (a) Exposure of cells to 1 μM isoproterenol triggered transient increases in cAMP levels near the plasma membrane. Pretreatment of cells with 10 μM rolipram, a PDE4 inhibitor, prevented the decline in the isoproterenol-induced cAMP signals. (b) 1 μM isoproterenol triggered a sustained, twofold increase in phosphodiesterase type 4 (PDE4) activity. (c) The decline in isoproterenol-dependent cAMP levels was not significantly altered by including 20 nM PKI, a PKA inhibitor, or 3 μM 59-74E, a GRK inhibitor, in the pipette solution; however, the decline in the cAMP levels was prevented when both PKI and 59-74E were included in the pipette solution. (d) After an initial 5-min stimulation with isoproterenol and a 5-min washout, little or no recovery of the signal was observed during a second 5-min stimulation with isoproterenol. (e) The amplitude of the signal in response to the second isoproterenol stimulation was not altered when PKI was included in the pipette solution, but was significantly increased when 59-74E was included. Taken together, these data indicate that either GRK-mediated desensitization of β2ARs or PKA-mediated stimulation of PDE4 activity is sufficient to cause declines in cAMP signals. In addition, the data indicate that GRK-mediated desensitization is primarily responsible for a sustained suppression of β2AR signaling. To better understand the interplay between receptor desensitization and PDE4 activity in controlling cAMP signals, we developed a mathematical model of this system. Simulations of cAMP signals using this model are consistent with the experimental data and demonstrate the importance of receptor levels, receptor desensitization, basal adenylyl cyclase activity, and regulation of PDE activity in controlling cAMP signals, and hence, on the overall sensitivity of the system.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3