Molecular Determinant for Specific Ca/Ba Selectivity Profiles of Low and High Threshold Ca2+ Channels

Author:

Cens Thierry12,Rousset Matthieu12,Kajava Andrey12,Charnet Pierre12

Affiliation:

1. Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 Centre National de la Recherche Scientifique, 34293 Montpellier, France

2. University of Montpellier II, 34095 Montpellier, France

Abstract

Voltage-gated Ca2+ channels (VGCC) play a key role in many physiological functions by their high selectivity for Ca2+ over other divalent and monovalent cations in physiological situations. Divalent/monovalent selection is shared by all VGCC and is satisfactorily explained by the existence, within the pore, of a set of four conserved glutamate/aspartate residues (EEEE locus) coordinating Ca2+ ions. This locus however does not explain either the choice of Ca2+ among other divalent cations or the specific conductances encountered in the different VGCC. Our systematic analysis of high- and low-threshold VGCC currents in the presence of Ca2+ and Ba2+ reveals highly specific selectivity profiles. Sequence analysis, molecular modeling, and mutational studies identify a set of nonconserved charged residues responsible for these profiles. In HVA (high voltage activated) channels, mutations of this set modify divalent cation selectivity and channel conductance without change in divalent/monovalent selection, activation, inactivation, and kinetics properties. The CaV2.1 selectivity profile is transferred to CaV2.3 when exchanging their residues at this location. Numerical simulations suggest modification in an external Ca2+ binding site in the channel pore directly involved in the choice of Ca2+, among other divalent physiological cations, as the main permeant cation for VGCC. In LVA (low voltage activated) channels, this locus (called DCS for divalent cation selectivity) also influences divalent cation selection, but our results suggest the existence of additional determinants to fully recapitulate all the differences encountered among LVA channels. These data therefore attribute to the DCS a unique role in the specific shaping of the Ca2+ influx between the different HVA channels.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3