Affiliation:
1. From the Department of Physiology, University of California, Berkeley
Abstract
The effects of ion concentration, pH, and presence of competing ions on the sodium and potassium binding properties of rat liver cell microsomes were studied. Typical adsorption isotherms were obtained in the concentration dependence studies, with saturation being reached when 1.2 to 1.4 m.eq. cations were retained per gm. of microsome Kjeldahl nitrogen. The retention was shown to be due to a binding to specific sites rather than to a trapping of the cations. The binding showed a sharp pH dependence in the range 6.0 to 7.5. The presence of one cation depressed the binding of the other, indicating that Na+ and K+ as well as H+ ions compete for the same sites. Potassium was bound slightly more strongly than sodium, while hydrogen was bound about 105 times more strongly than either. Calculations show that the binding follows the simple mass law.
Similarities between adsorption by microsomes and adsorption by synthetic cation exchange resins are discussed and compared to some of the characteristics of electrolyte behavior in living systems. A possible ion exchange elution, active cation transport mechanism is suggested, involving the preferential elution of Na+ out of the cell by H+ ions produced by metabolism.
Publisher
Rockefeller University Press
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献