Calcium regulates some, but not all, aspects of light adaptation in rod photoreceptors.

Author:

Nicol G D1,Bownds M D1

Affiliation:

1. Laboratory of Molecular Biology, University of Wisconsin, Madison 53706.

Abstract

The role of calcium as a regulator of light adaptation in rod photoreceptors was examined by manipulation of the intracellular Ca2+ concentration through the use of the calcium ionophore A23187 and external Ca2+ buffers. These studies utilized suspensions of isolated and purified frog rod outer segments that retain their mitochondria-rich inner segments (OS-IS). Three criteria of the dark- and light-adapted flash response were characterized as a function of the Ca2+ concentration: (a) the time to peak, (b) the rate of recovery, and (c) the response amplitude or sensitivity. For all Ca2+ concentrations examined, the time to peak of the flash response was accelerated in the presence of background illumination, suggesting that mechanisms controlling this aspect of adaptation are independent of the Ca2+ concentration. The recovery kinetics of the flash response appeared to depend on the Ca2+ concentration. In 1 mM Ca2+-Ringer's and 300 nM Ca2+-Ringer's + A23187, background illumination enhanced the recovery rate of the response; however, in 10 and 100 nM Ca2+-Ringer's + A23187, the recovery rates were the same for dark- and light-adapted responses. This result implies that a critical level of Ca2+ may be necessary for background illumination to accelerate the recovery of the flash response. The sensitivity of the flash response in darkness (SDF) was dependent on the Ca2+ concentration. In 1 mM Ca2+-Ringer's SDF was 0.481 pA per bleached rhodopsin (Rh*); a background of four Rh*/s decreased SDF by half (Io). At 300 nM Ca2+ + A23187, SDF was reduced to 0.0307 pA/Rh* and Io increased to 60 Rh*/s. At 100 nM Ca2+ + A23187, SDF was reduced further to 0.0025 pA/Rh* and Io increased to 220 Rh*/s. In 10 nM Ca2+ + A23187, SDF was lowered to 0.00045 pA/Rh* and Io raised to 760 RhI/s. Using these values of SDF and Io for each respective Ca2+ concentration, the dependence of the flash sensitivity on background intensity could be described by the Weber-Fechner relation. Under low Ca2+ conditions + A23187, bright background illumination could desensitize the flash response. These results are consistent with the idea that the concentration of Ca2+ may set the absolute magnitude of response sensitivity in darkness, and that there exist mechanisms capable of adapting the photoresponse in the absence of significant changes in cytoplasmic Ca2+ concentration.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3