Shaker potassium channel gating. II: Transitions in the activation pathway.

Author:

Zagotta W N1,Hoshi T1,Dittman J1,Aldrich R W1

Affiliation:

1. Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305.

Abstract

Voltage-dependent gating behavior of Shaker potassium channels without N-type inactivation (ShB delta 6-46) expressed in Xenopus oocytes was studied. The voltage dependence of the steady-state open probability indicated that the activation process involves the movement of the equivalent of 12-16 electronic charges across the membrane. The sigmoidal kinetics of the activation process, which is maintained at depolarized voltages up to at least +100 mV indicate the presence of at least five sequential conformational changes before opening. The voltage dependence of the gating charge movement suggested that each elementary transition involves 3.5 electronic charges. The voltage dependence of the forward opening rate, as estimated by the single-channel first latency distribution, the final phase of the macroscopic ionic current activation, the ionic current reactivation and the ON gating current time course, showed movement of the equivalent of 0.3 to 0.5 electronic charges were associated with a large number of the activation transitions. The equivalent charge movement of 1.1 electronic charges was associated with the closing conformational change. The results were generally consistent with models involving a number of independent and identical transitions with a major exception that the first closing transition is slower than expected as indicated by tail current and OFF gating charge measurements.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 288 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3