Deuterium Isotope Effects on Permeation and Gating of Proton Channels in Rat Alveolar Epithelium

Author:

DeCoursey Thomas E.1,Cherny Vladimir V.1

Affiliation:

1. From the Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612

Abstract

The voltage-activated H+ selective conductance of rat alveolar epithelial cells was studied using whole-cell and excised-patch voltage-clamp techniques. The effects of substituting deuterium oxide, D2O, for water, H2O, on both the conductance and the pH dependence of gating were explored. D+ was able to permeate proton channels, but with a conductance only about 50% that of H+. The conductance in D2O was reduced more than could be accounted for by bulk solvent isotope effects (i.e., the lower mobility of D+ than H+), suggesting that D+ interacts specifically with the channel during permeation. Evidently the H+ or D+ current is not diffusion limited, and the H+ channel does not behave like a water-filled pore. This result indirectly strengthens the hypothesis that H+ (or D+) and not OH− is the ionic species carrying current. The voltage dependence of H+ channel gating characteristically is sensitive to pHo and pHi and was regulated by pDo and pDi in an analogous manner, shifting 40 mV/U change in the pD gradient. The time constant of H+ current activation was about three times slower (τact was larger) in D2O than in H2O. The size of the isotope effect is consistent with deuterium isotope effects for proton abstraction reactions, suggesting that H+ channel activation requires deprotonation of the channel. In contrast, deactivation (τtail) was slowed only by a factor ≤1.5 in D2O. The results are interpreted within the context of a model for the regulation of H+ channel gating by mutually exclusive protonation at internal and external sites (Cherny, V.V., V.S. Markin, and T.E. DeCoursey. 1995. J. Gen. Physiol. 105:861–896). Most of the kinetic effects of D2O can be explained if the pKa of the external regulatory site is ∼0.5 pH U higher in D2O.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3