A Cantú syndrome mutation produces dual effects on KATP channels by disrupting ankyrin B regulation

Author:

Crespo-García Teresa12ORCID,Rubio-Alarcón Marcos12,Cámara-Checa Anabel12ORCID,Dago María12,Rapún Josu12ORCID,Nieto-Marín Paloma12,Marín María2,Cebrián Jorge12ORCID,Tamargo Juan12,Delpón Eva12ORCID,Caballero Ricardo12

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón 1 , Madrid, Spain

2. Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares 2 , Madrid, Spain

Abstract

ATP-sensitive potassium (KATP) channels composed of Kir6.x and sulfonylurea receptor (SURs) subunits couple cellular metabolism to electrical activity. Cantú syndrome (CS) is a rare disease caused by mutations in the genes encoding Kir6.1 (KCNJ8) and SUR2A (ABCC9) that produce KATP channel hyperactivity due to a reduced channel block by physiological ATP concentrations. We functionally characterized the p.S1054Y SUR2A mutation identified in two CS carriers, who exhibited a mild phenotype although the mutation was predicted as highly pathogenic. We recorded macroscopic and single-channel currents in CHO and HEK-293 cells and measured the membrane expression of the channel subunits by biotinylation assays in HEK-293 cells. The mutation increased basal whole-cell current density and at the single-channel level, it augmented opening frequency, slope conductance, and open probability (Po), and promoted the appearance of multiple conductance levels. p.S1054Y also reduced Kir6.2 and SUR2A expression specifically at the membrane. Overexpression of ankyrin B (AnkB) prevented these gain- and loss-of-function effects, as well as the p.S1054Y-induced reduction of ATP inhibition of currents measured in inside-out macropatches. Yeast two-hybrid assays suggested that SUR2A WT and AnkB interact, while p.S1054Y interaction with AnkB is decreased. The p.E322K Kir6.2 mutation, which prevents AnkB binding to Kir6.2, produced similar biophysical alterations than p.S1054Y. Our results are the first demonstration of a CS mutation whose functional consequences involve the disruption of AnkB effects on KATP channels providing a novel mechanism by which CS mutations can reduce ATP block. Furthermore, they may help explain the mild phenotype associated with this mutation.

Funder

Ministerio de Ciencia e Innovación

Universidad Complutense de Madrid

Comunidad Autónoma de Madrid

ERA-Net for Research on Rare Diseases

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3