Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells.

Author:

Uehara A,Hume J R

Abstract

Inhibition of whole-cell calcium currents in enzymatically dispersed frog atrial myocytes by D-600, diltiazem, and nifedipine was studied using a single-micropipette voltage-clamp technique. The objective of these experiments was to test the applicability of a modulated-receptor hypothesis similar to that proposed for local anesthetic interactions with sodium channels to account for the tonic and frequency-dependent interactions of these organic compounds with myocardial calcium channels. Data consistent with such a hypothesis include: (a) prominent use-dependent block of iCa by D-600 and diltiazem, which are predominantly charged at physiological pH; (b) iCa block by an externally applied, permanently charged dihydropyridine derivative is greatly attenuated; (c) all three antagonists produce large negative shifts in the voltage dependence of iCa availability; (d) block of iCa by these compounds is state-dependent; (e) reactivation of iCa in the presence of all three antagonists is biexponential, which suggests that drug-free channels recover with a normal time course and drug-bound channels recover more slowly; and (f) the kinetics of the drug-induced slow iCa recovery process may be determined largely by factors such as size and molecular weight, in addition to lipid solubility of the compounds. Experiments in which the pH was modified, however, reveal some important differences for the interaction of organic calcium antagonists with myocardial calcium channels. Acidification, in addition to changing the proportion of charged and neutral antagonist in solution, was found to selectively antagonize tonic inhibition of iCa by diltiazem and nifedipine, without changing the kinetics of the drug-induced slow iCa reactivation process. It is concluded that two distinct receptor sites may be involved in block of iCa by some of these compounds: a proton-accessible site and a proton-inaccessible site.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3