A time-dependent and voltage-sensitive K+ current in single cells from frog atrium.

Author:

Simmons M A,Creazzo T,Hartzell H C

Abstract

A quantitative description of the time-dependent and voltage-sensitive outward currents in heart has been hampered by the complications inherent to the multicellular preparations previously used. We have used the whole-cell patch-clamp technique to record the delayed outward K+ current, IK, in single cells dissociated from frog atrium. Na+ currents were blocked with tetrodotoxin and Ca2+ currents with Mn2+ or Cd2+. After depolarizations from -50 mV to potentials positive to -30 mV, a time-dependent outward current was observed. This current has been characterized according to its steady state activation, kinetics, and ion transfer function. The current is well described as a single Hodgkin-Huxley conductance. The deactivation of the current is a single exponential. Activation of the current is sigmoid and is fitted well by raising the activation variable to the second power. The reversal potential of IK is near EK and shifts by 57 mV/10-fold change in [K+]o. This suggests that the current is carried selectively by K ions. The threshold for activation is near -30 mV. IK is maximally activated positive to +20 mV and shows no inactivation. The fully activated current-voltage relationship is linear between -110 and +50 mV. Neither Ba2+ (250 microM) nor Cd2+ (100 microM) affects IK.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrophysiology of the Danio rerio Heart;Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology;2024-06

2. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation;Journal of Personalized Medicine;2023-08-08

3. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation;Frontiers in Cardiovascular Medicine;2020-03-31

4. Ion Channels in Presynaptic Nerve Terminals and Control of Transmitter Release;Physiological Reviews;1999-07-01

5. A slowly activating voltage-dependent K+ current in rat pituitary nerve terminals.;The Journal of Physiology;1996-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3