Allosteric Regulation of Na/Ca Exchange Current by Cytosolic Ca in Intact Cardiac Myocytes

Author:

Weber Christopher R.1,Ginsburg Kenneth S.1,Philipson Kenneth D.2,Shannon Thomas R.1,Bers Donald M.1

Affiliation:

1. Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153

2. Cardiovascular Research Lab, University of California Los Angeles School of Medicine, Los Angeles, California 90095

Abstract

The cardiac sarcolemmal Na-Ca exchanger (NCX) is allosterically regulated by [Ca]i such that when [Ca]i is low, NCX current (INCX) deactivates. In this study, we used membrane potential (Em) and INCX to control Ca entry into and Ca efflux from intact cardiac myocytes to investigate whether this allosteric regulation (Ca activation) occurs with [Ca]i in the physiological range. In the absence of Ca activation, the electrochemical effect of increasing [Ca]i would be to increase inward INCX (Ca efflux) and to decrease outward INCX. On the other hand, Ca activation would increase INCX in both directions. Thus, we attributed [Ca]i-dependent increases in outward INCX to allosteric regulation. Ca activation of INCX was observed in ferret myocytes but not in wild-type mouse myocytes, suggesting that Ca regulation of NCX may be species dependent. We also studied transgenic mouse myocytes overexpressing either normal canine NCX or this same canine NCX lacking Ca regulation (Δ680–685). Animals with the normal canine NCX transgene showed Ca activation, whereas animals with the mutant transgene did not, confirming the role of this region in the process. In native ferret cells and in mice with expressed canine NCX, allosteric regulation by Ca occurs under physiological conditions (KmCaAct = 125 ± 16 nM SEM ≈ resting [Ca]i). This, along with the observation that no delay was observed between measured [Ca]i and activation of INCX under our conditions, suggests that beat to beat changes in NCX function can occur in vivo. These changes in the INCX activation state may influence SR Ca load and resting [Ca]i, helping to fine tune Ca influx and efflux from cells under both normal and pathophysiological conditions. Our failure to observe Ca activation in mouse myocytes may be due to either the extent of Ca regulation or to a difference in KmCaAct from other species. Model predictions for Ca activation, on which our estimates of KmCaAct are based, confirm that Ca activation strongly influences outward INCX, explaining why it increases rather than declines with increasing [Ca]i.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3