Light-induced reduction in excitation efficiency in the trp mutant of Drosophila.

Author:

Minke B

Abstract

In the transient receptor potential (trp) mutant of Drosophila, the receptor potential appears almost normal in response to a flash but quickly decays to baseline during prolonged illumination. Photometric and early receptor potential measurements of the pigment suggest that the pigment is normal and that the decay of the trp response during illumination does not arise from a reduction in the available photopigment molecules. However, there is reduction in pigment concentration with age. Light adaptation cannot account for the decay of the trp response during illumination: in normal Drosophila a dim background light shortens the latency and rise time of the response and also shifts the intensity response function (V-log I curve) to higher levels of light intensity with relatively little reduction in the maximal amplitude (Vmax) of response. In the trp mutant, a dim background light or short, strong adapting light paradoxically lengthens the latency and rise time of the response and substantially reduces Vmax without a pronounced shift of the V-log I curve along the I axis. The effect of adapting light on the latency and V-log I curve seen in trp are associated with a reduction in effective stimulus intensity (reduction in excitation efficiency) rather than with light adaptation. Removing extracellular Ca+2 reduces light adaptation in normal Drosophila, as evidenced by the appearance of "square" responses to strong illumination. In the trp mutant, removing extracellular Ca+2 does not prevent the decay of the response during illumination.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3