Author:
Hagiwara S,Ozawa S,Sand O
Abstract
Ionic mechanisms of excitation were studied in the immature egg cell membrane of a starfish, Mediaster aequalis, by analyzing membrane currents during voltage clamp. The cell membrane shows two different inward current mechanisms. One is activated at a membrane potential of -55 approximately -50 mV and the other at -7 approximately -6 mV. They are referred to as channels I and II, respectively. A similar difference is also found in the membrane potential of half inactivation. Currents of the two channels can, therefore, be separated by selective inactivation. The currents of both channels depend on Ca++ (Sr++ or Ba++) but only the current of channel I depends on Na+. The time-course of current differs significantly between the two channels when compared at the same membrane potential. The relationship between the membrane current and the concentration of the permeant ions is also different between the two channels. The result suggests that channel II is a more saturable system. The sensitivity of the current to blocking cations such as Co++ or Mg++ is substantially greater in channel II than in channel I. Currents of both channels depend on the external pH with an apparent pK of 5.6. They are insensitive to 3 muM tetrodotoxin (TTX) but are eliminated totally by 7.3 mM procaine. The properties of channel II are similar to those of the Ca channel found in various adult tissues. The properties of channel I differ, however, from those of either the typical Ca or Na channels. Although the current of the channel depends on the external Na the amplitude of the Na current decreases not only with the Na concentration but also with the Ca concentration. No selectivity is found among Li+, Na+, Rb+, and Cs+. The experimental result suggests that Na+ does not carry current but modifies the current carried by Ca in channel I.
Publisher
Rockefeller University Press
Cited by
253 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献