The performance of large language models in intercollegiate Membership of the Royal College of Surgeons examination

Author:

Chan J1,Dong T1,Angelini GD1

Affiliation:

1. Bristol Heart Institute, University of Bristol, UK

Abstract

Introduction Large language models (LLM), such as Chat Generative Pre-trained Transformer (ChatGPT) and Bard utilise deep learning algorithms that have been trained on a massive data set of text and code to generate human-like responses. Several studies have demonstrated satisfactory performance on postgraduate examinations, including the United States Medical Licensing Examination. We aimed to evaluate artificial intelligence performance in Part A of the intercollegiate Membership of the Royal College of Surgeons (MRCS) examination. Methods The MRCS mock examination from Pastest, a commonly used question bank for examinees, was used to assess the performance of three LLMs: GPT-3.5, GPT 4.0 and Bard. Three hundred mock questions were input into the three LLMs, and the responses provided by the LLMs were recorded and analysed. The pass mark was set at 70%. Results The overall accuracies for GPT-3.5, GPT 4.0 and Bard were 67.33%, 71.67% and 65.67%, respectively (p = 0.27). The performances of GPT-3.5, GPT 4.0 and Bard in Applied Basic Sciences were 68.89%, 72.78% and 63.33% (p = 0.15), respectively. Furthermore, the three LLMs obtained correct answers in 65.00%, 70.00% and 69.17% of the Principles of Surgery in General questions (p = 0.67). There were no differences in performance in the overall and subcategories among the three LLMs. Conclusions Our findings demonstrated satisfactory performance for all three LLMs in the MRCS Part A examination, with GPT 4.0 the only LLM that achieved the pass mark set.

Publisher

Royal College of Surgeons of England

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3