Prediction of sports injuries by psychological process monitoring

Author:

Schiepek Günter1ORCID,Schorb Alexander1ORCID,Schöller Helmut1ORCID,Aichhorn Wolfgang1

Affiliation:

1. University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University Salzburg, Austria

Abstract

Abstract: Objectives: Sports injuries usually have severe consequences for the concerned athletes as well as for trainers and teams. The question is if accidents can be predicted in specific cases. Can early-warning signals be detected in psychological time series? Methods: An App-based method of process-monitoring was applied for data collection of psychological parameters. Daily self-assessments using a Sports Process Questionnaire were realized by a professional soccer player during the after-care period of a psychiatric treatment. Methods for the prediction of critical events were applied (Dynamic Complexity, Recurrence Plots, dynamic inter-item correlations). Injuries may demarcate pattern transitions in the mental functioning of athletes, which could be identified by the Pattern Transition Detection Algorithm (PTDA). Results: Early-warning signals of the accident could be identified in the time series. Dynamic Complexity revealed a critical instability, Recurrence Plots a transient period, and the dynamic inter-item correlations a period of increased system coherence just before the accident. The PTDA revealed a phase transition at the occurring injury. Conclusions: Even if the analysis is based on a single case, the results are promising. Psychological self-reports allow a short-term prediction of bio-mechanical injuries and by this, can help to prevent them. Nonlinear measures can be applied to time series data collected by digital process monitoring.

Publisher

Hogrefe Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3