Patient specific biomodel of the whole aorta - the importance of calcified plaque removal

Author:

Håkansson 1,Rantatalo 2,Hansen 3,Wanhainen 4

Affiliation:

1. Divisions of Industrial Design, Luleå University of Technology, Luleå, Sweden

2. Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden

3. Departments of Radiology, Uppsala University Hospital, Uppsala, Sweden

4. Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University Hospital, Uppsala, Sweden

Abstract

Background: The use of anatomical models produced by 3D printing technique (rapid prototyping, RP) is gaining increased acceptance as a complementary tool for planning complex surgical interventions. This paper describes a method for creating a patient specific replica of the whole aorta. Methods: Computed tomography angiography (CTA) DICOM-data was converted to a three-dimensional computer aided design-model (CAD) of the inner wall of the aorta representing the lumen where the calcified plaque contribution was removed in a multi-step editing-manoeuvre. The edited CAD-model was used for creating a physical plaster model of the true lumen in a 3D-printer. Elastic and transparent silicon was applied onto the plaster model, which was then removed leaving a silicon replica of the aorta. Results: The median (interquartile range) difference between diameters obtained from CTA- and RP plaster-model at 19 predefined locations was 0.5 mm (1 mm) which corresponds to a relative median difference of 4.6% (7.0%). The average wall thickness of the silicone model was 3.5 mm. The elasticity property and performance during intervention was good with an acceptable transparency. Conclusions: The integration of RP-techniques with CAD based reconstruction of 3D-medical imaging data provides the needed tools for making a truly patient specific replica of the whole aorta with high accuracy. Plaque removal postprocessing is necessary to obtain a true inner wall configuration.

Publisher

Hogrefe Publishing Group

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3