Transformation of Flavonoids by Intestinal Microorganisms

Author:

Blaut 1,Schoefer 1,Braune 1

Affiliation:

1. Department of Gastrointestinal Microbiology, German Institute of Human Nutrition, Bergholz-Rehbrücke, Germany

Abstract

Fruit, vegetables and cereals contain a wealth of secondary plant metabolites which have been implicated in the promotion of health. To understand the mechanism of their action it is necessary to gain more information on their fate in the body following ingestion. A certain proportion of ingested secondary plant constituents may escape absorption in the small intestine and therefore undergo transformation by intestinal microorganisms or enterohepatic circulation. To study the transformation of secondary plant metabolites by bacteria, Eubacterium ramulus was isolated from human feces and incubated with selected flavonoids. E. ramulus is a strictly anaerobic bacterium which was found to be present in the gastrointestinal tract of most individuals investigated. E. ramulus cleaves the ring system of several flavonols and flavones giving rise to the corresponding hydroxyphenylacetic and hydroxyphenylpropionic acids, respectively, as well as acetate and butyrate. Degradation pathways were proposed based on the intermediates detected by high performance liquid chromatography (HPLC) and HPLC coupled with mass spectrometry (LC-MS) and the detection of enzymes that catalyze reactions such as taxifolin isomerization, phloretin hydrolysis and phloroglucinol reduction. The dearomatizing phloroglucinol reductase, presumably part of all flavonoid degradation pathways, was purified and characterized. The gene encoding phloretin hydrolase was cloned from a E. ramulus gene library taking advantage of a newly developed fluorescence test for activity screening. Moreover, a new intermediate was discovered and identified by MS and 1H and 13C NMR analysis as alphitonin. To investigate the degradational potential of E. ramulus under in vivo conditions, germfree rats were associated with E. ramulus. Following the intragastric application of quercetin-3-glucoside, urine and feces of gnotobiotic rats were analyzed for degradational products originating from quercetin-3-glucoside. In feces of rats monoassociated with E. ramulus, 3,4-dihydroxyphenylacetic acid was found, indicating that this organism is able to cleave quercetin under in vivo conditions. To investigate in which way the dietary flavonoid content affects the cell counts of E. ramulus in the human intestinal tract, twelve human subjects consumed a flavonoid-free diet for one week and at one point during this period a large dose of flavonoids. Fecal samples from both phases of the study were analyzed by in-situ hybridization for total bacterial counts and counts of E. ramulus. Total cell counts and the cell counts of E. ramulus decreased significantly during the flavonoid-free period, while there was an increase in the E. ramulus counts of up to 10-fold during the flavonoid-rich period indicating that dietary secondary plant metabolites may have an influence on the intestinal microflora. E. ramulus is also capable of converting the isoflavonoids genistein and daidzein to the products 2-(4-hydroxyphenyl)-propionic acid and O-desmethylangolensin, respectively.

Publisher

Hogrefe Publishing Group

Subject

Nutrition and Dietetics,General Medicine,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3