Microbial cell autofluorescence as a method for measuring the intracellular content of B2 and B6 vitamins

Author:

Maslanka Roman1ORCID,Przywara Michał1ORCID,Janeczko Agnieszka1ORCID,Zadrag-Tecza Renata1ORCID

Affiliation:

1. Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland

Abstract

Abstract: Vitamins are important organic compound required for the proper functioning of cells and organisms. Vitamins of special industrial and pharmaceutical interests include riboflavin (vitamin B2) and pyridoxine (vitamin B6). Commercial production of those biological compounds has increasingly relied on microorganisms and requires simple methods for detecting and estimating their level of synthesis during the biotechnological process. In the case of yeast, methods based on autofluorescence, i.e. natural fluorescence emitted by several cellular compounds, including vitamins, may be useful. Considering that the intensity of emitted light is proportional to the intracellular concentration of riboflavin and pyridoxine, autofluorescence may be a convenient method for their quantification. In this report, we demonstrate a simple, rapid, and sufficiently trustworthy spectrofluorimetric method for determining the content of vitamins B2 and B6 in yeast cells which consists of cells growing, harvesting, washing, and resuspending in a buffer, and then measuring the emitted visible light using specific wavelength of excitation (λex=340 nm and λem=385 nm for pyridoxine; λex=460 nm and λem=535 nm for riboflavin). The limits of detection (LOD) and quantification (LOQ) estimated through measurements of vitamin fluorescence were below 0.005 μg/ml for riboflavin and below 0.05 μg/ml for pyridoxine, respectively. In turn, the smallest credible cell density for measuring autofluorescence was set at 1×108 yeast cells/ml. The relative level of the cell’s autofluorescence can be expressed in mass units by applying proper calculation formulas. A comparison of the autofluorescence-based method with the reference HPLC-UV method shows that autofluorescence measurement can be used in the screening analysis of vitamin content (especially riboflavin) in microbial cells.

Publisher

Hogrefe Publishing Group

Subject

Nutrition and Dietetics,General Medicine,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3