Academic Libraries Can Develop AI Chatbots for Virtual Reference Services with Minimal Technical Knowledge and Limited Resources

Author:

Chase MatthewORCID

Abstract

A Review of: Rodriguez, S., & Mune, C. (2022). Uncoding library chatbots: Deploying a new virtual reference tool at the San Jose State University Library. Reference Services Review, 50(3), 392-405. https://doi.org/10.1108/RSR-05-2022-0020 Objective – To describe the development of an artificial intelligence (AI) chatbot to support virtual reference services at an academic library. Design – Case study. Setting – A public university library in the United States. Subjects – 1,682 chatbot-user interactions. Methods – A university librarian and two graduate student interns researched and developed an AI chatbot to meet virtual reference needs. Developed using chatbot development software, Dialogflow, the chatbot was populated with questions, keywords, and other training phrases entered during user inquiries, text-based responses to inquiries, and intents (i.e., programmed mappings between user inquiries and chatbot responses). The chatbot utilized natural language processing and AI training for basic circulation and reference questions, and included interactive elements and embeddable widgets supported by Kommunicate (i.e., a bot support platform for chat widgets). The chatbot was enabled after live reference hours were over. User interactions with the chatbot were collected across 18 months since its launch. The authors used analytics from Kommunicate and Dialogflow to examine user interactions. Main Results – User interactions increased gradually since the launch of the chatbot. The chatbot logged approximately 44 monthly interactions during the spring 2021 term, which increased to approximately 137 monthly interactions during the spring 2022 term. The authors identified the most common reasons for users to engage the chatbot, using the chatbot’s triggered intents from user inquiries. These reasons included information about hours for the library building and live reference services, finding library resources (e.g., peer-reviewed articles, books), getting help from a librarian, locating databases and research guides, information about borrowing library items (e.g., laptops, books), and reporting issues with library resources. Conclusion – Libraries can successfully develop and train AI chatbots with minimal technical expertise and resources. The authors offered user experience considerations from their experience with the project, including editing library FAQs to be concise and easy to understand, testing and ensuring chatbot text and elements are accessible, and continuous maintenance of chatbot content. Kommunicate, Dialogflow, Google Analytics, and Crazy Egg (i.e., a web usage analytics tool) could not provide more in-depth user data (e.g., user clicks, scroll maps, heat maps), with plans to further explore other usage analysis software to collect the data. The authors noted that only 10% of users engaged the chatbot beyond the initial welcome prompt, requiring more research and user testing on how to facilitate user engagement.

Publisher

University of Alberta Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3