INITIAL APPLICATION OF NONLINEAR REGRESSION MODELS TO ASSESS BIOLOGICAL SELF-PURIFICATION CAPACITY IN VUNG RO BAY (PHU YEN)

Author:

Huan Nguyen Huu,Hieu Nguyen Trinh Duc

Abstract

The self-purification of waters is a complex process, including physical, biological and chemical processes. Based on experimental data in May 2014 and December 2014 in Vung Ro bay (Phu Yen), this paper assesses biological self-purification capicity through the biodegradation of organic matter and nutrient assimilation. The capacity of biodegradation of organic matter is represented by nonlinear regression models of the relationship between BOD and decay time: model of Streeter - Phelps, Young and Clark (1965); Mason et al., (2006). The capacity of nutrient assimilation is represented by the nonlinear regression models of the relationship between photosynthesis and irradiance: Model of Webb et al., (1974); Platt et al., (1980); Eilers and Peeters (1988). Using the least squares method on the nonlinear regression model, the parameters characterizing the self purification process in Vung Ro waters were identified. The study results indicated that the rate of organic biodegradation in Vung Ro waters was 0.1073 ± 0.0781 days-1 (with RMSE = 0.0663 ± 0.0386); the half-time of decay was about 6 days. The maximum intensity of photosynthesis in Vung Ro waters was 57.6881 ± 25.2211 mgC (mgChal)-1h-1 (with RMSE = 3.5900 ± 2.2170); maximum nutrient assimilation of phytoplankton was 9.1719 ± 3.5962 mgN/m3/h and 1.2693 ± 0.4977 mgP/m3/h.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Subject

General Medicine

Reference32 articles.

1. Nguyễn Hữu Huân, Nguyễn Trịnh Đức Hiệu, 2017. Năng suất sinh học sơ cấp của thực vật nổi và một số yếu tố sinh thái liên quan ở vực nước Vũng Rô (Phú Yên). Tạp chí Sinh học, 39(1), 40–50.

2. Streeter, H. W., and Phelps, E. B., 1925. A Study of the Pollution and Natural Purification of the Ohio River, III, Factors Concerned in the Phenomena of Oxidation and Reaeration. US Public Health Service. Public Health Bulletin, 146, 75.

3. Moore, E. W., Thomas, H. A., Snow, W. B., and Ruchhoft, C. C., 1950. Simplified method for analysis of BOD data [with discussion]. Sewage and Industrial Wastes, 1343–1355.

4. Thomas Jr, A. H., 1950. Graphical determination of BOD curve constants. Water & Sewage Works, 97, 123–124.

5. Navone, R., 1960. A new method for calculating K and L for sewage. Water and Sewage Works, 107, 285–286.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3