ELECTROCHEMICAL CO2 REDUCTION OF RHENIUM TRICARBONYL COMPLEX

Author:

Nguyen Ngoc Phuong,Nguyen Manh Tuan,Tran Thanh Trang,Tran Ngoc Anh,Nguyen Dang Nam,Dang Vinh Quang,Pham Duy Khanh,Nguyen Van Khiem

Abstract

Carbon dioxide is considered as a primary reason for global climate change, thus CO2 needs to be urgently reduced. Catalytic conversion of CO2 into chemical fuels is one of the most crucial technologies that can address both global warming and the depletion of fossil fuels. Rhenium tricarbonyl complex [Re(bpy)(CO)3Cl] (bpy: 2,2’ bipyridine) possesses a great potential of capturing and highly selective converting CO2 to carbon monoxide. In the current study, we synthesized and characterized the structure of [Re(bpy)(CO)3Cl] by 1H NMR, ESI-MS, FITR, and PL spectroscopy. The electrochemical properties and the electrochemical CO2 reduction of [Re(bpy)(CO)3Cl] in the absence and presence of an electron donor source were carried out using cyclic voltammetric measurements. The cyclic voltammogram of [Re(bpy)(CO)3Cl] in N2-saturated DMF solution displayed one irreversible reduction wave at -1.33 V. [Re(bpy)(CO)3Cl] expressed its electrocatalytic behavior in CO2 atmosphere by the enhancement of the cathodic current density. The current increased approximately twofold in CO2-saturated DMF solution (from 0.15 to 0.32 mA/cm2) and more enhancement when adding TEOA solvent. With the presence of an electron donor, the CO2 reduction efficiency of [Re(bpy)(CO)3Cl] was improved and represented by an approximately fourfold increase in cathodic current from 0.32 to 1.12 mA/cm2. One-electron reduced species of [Re(bpy)(CO)3Cl] observed at 1.33 V in N2 and CO2-saturated electrolytes contributed to the reaction with CO2.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3