Preparation of microfluidics device from PMMA for liposome synthesis

Author:

Nguyen Duong Thanh,Tran Van Thi Thanh,Nguyen Huy Trung,Cao Hong Thi,Vu Thai Quoc,Trinh Dung Quang

Abstract

Microfluidics has emerged in recent years as a technology that has advantages and is well suited for studying chemistry, biology, and physics at the microscale. A common material which has been widely use to fabricate the microfluidic system is thermoplastic materials. The method of fabricating microfluidic devices has been growing because of advantages such as high-quality feature replication, inexpensiveness, and ease of use. However, the major barrier to the utilization of thermoplastics is the lack of bonding methods for different plastic layers to close the microchannels. Therefore, this study focused on fabricating a microfluidic device on poly(methyl methacrylate) (PMMA) plates by laser engraving. The bonding technique for plastic layers has relied on the application of small amounts of ethanol with conditions of low temperatures (100 ⁰C), and relatively low pressures (5 tons) for 2 minutes. With this technique, the microfluidic device is created to operate stably, without leakage or cracking even under high pressure. The microfluidic device was applied to synthesize liposomes with a 5:1 ratio of syringe pump velocity between water and lipid solution. The size of liposomes after synthesis is 109.64 ± 4.62 nm (mean ± sd) and the PDI is in accordance with standard conditions (PDI < 0.200).

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3