INTEGRATING IMAGE FEATURES WITH CONVOLUTIONAL SEQUENCE-TO-SEQUENCE NETWORK FOR MULTILINGUAL VISUAL QUESTION ANSWERING

Author:

Thai Triet,Luu Son T.

Abstract

Visual question answering is a task that requires computers to give correct answers for the input questions based on the images. This task can be solved by humans with ease, but it is a challenge for computers. The VLSP2022-EVJVQA shared task carries the Visual question answering task in the multilingual domain on a newly released dataset UIT-EVJVQA, in which the questions and answers are written in three different languages: English, Vietnamese, and Japanese. We approached the challenge as a sequence-to-sequence learning task, in which we integrated hints from pre-trained state-of-the-art VQA models and image features with a convolutional sequence-to-sequence network to generate the desired answers. Our results obtained up to 0.3442 by F1 score on the public test set and 0.4210 on the private test set.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Reference31 articles.

1. S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “Vqa: Visual question answering,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.

2. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” 2016.

3. I. Chowdhury, K. Nguyen, C. Fookes, and S. Sridharan, “A cascaded long short-term memory (lstm) driven generic visual question answering (vqa),” in 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 1842–1846.

4. Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with gated convolutional networks,” CoRR, vol. abs/1612.08083, 2016. [Online]. Available: http://arxiv.org/abs/1612.08083

5. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available: https: //aclanthology.org/N19-1423

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3