Size-controlled synthesis of ZnO nanorods for highly sensitive NO\(_2\) gas sensors

Author:

Minh Luu Hoang,Thu Pham Thi Thuy,Tuan Luong Minh,Thanh Bui Quang,Hue Mai Thi,Tho Ta Thi,Tong Pham VanORCID

Abstract

The nanostructure of zinc oxide has excellent potential in gas sensing applications to detect and monitor toxic gases in the atmosphere. Appropriate nanostructures can enhance the performance of gas sensors. In this study, we report the controlled fabrication of ZnO nanorods of different sizes by a simple hydrothermal method, which can be applied to detect NO2 toxic gas efficiently. The size of the nanorods was controlled by varying the amount of D-Glucose. The morphology and crystal structure of the materials were analyzed using advanced techniques such as field-emission scanning electron microscopy, X-ray diffraction patterns, and energy-dispersive X-ray spectroscopy. The sensor's response based on ZnO nanorods at 2 ppm NO2 is 13.3 and 18.8 times higher than that of 500 ppm CO and NH3, respectively. In addition, the sensor also exhibits good selectivity and repeatability for NO2 toxic gas; The optimum working temperature is about 150 oC. \[H_2= H_1+ H_1 \tag{1}\] H2 hoac H2

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3