Effects of Hydrophobic and Electrostatic Interactions on the Escape of Nascent Proteins at Bacterial Ribosomal Exit Tunnel

Author:

Thuy Bui Phuong,Le Duy Manh,Nguyen Thi Hai Yen,Trinh Xuan Hoang

Abstract

We study the escape process of nascent proteins at the ribosomal exit tunnel of bacterial Escherichia coli by using molecular dynamics simulations with coarse-grained and atomistic models. It is shown that the effects of hydrophobic and electrostatic interactions on the protein escape at the E. coli's tunnel are qualitatively similar to those obtained previously at the exit tunnel of archaeal Haloarcula marismortui, despite significant differences in the structures and interactions of the ribosome tunnels from the two organisms. Most proteins escape efficiently and their escape time distributions can be fitted to a simple diffusion model. Attractive interactions between nascent protein and the tunnel can significantly slow down the escape process, as shown for the CI2 protein. Interestingly, it is found that the median escape times of the considered proteins (excluding CI2) strongly correlate with the function \(N_h + 5.9 Q\) of the number of hydrophobic residues, \(N_h\), and the net charge, \(Q\), of a protein, with a correlation coefficient of 0.958 for the E. coli's tunnel. The latter result is in quantitative agreement with a previous result for the H. marismortui's tunnel.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3