Comparing receptor binding properties of SARS-CoV-2 and of SARS-CoV virus by using unsupervised machine learning models

Author:

Nguyen Toan TheORCID,Nguyen-Manh Duc,Nguyen Hai LyORCID,Cong Phuong Cao,Lai Thi Thu HienORCID,Phan Duc Anh,Nguyen Tien CuongORCID,Kranjc Agata

Abstract

This work continues our recent molecular dynamics investigation of the three systems of the human ACE2 receptor interacting with the viral RBDs of SARS-CoV virus and two variants of SARS-CoV-2 viruses. The simulations are extended and analyzed using  unsupervised machine learning models to give complementary descriptions of hidden features of the viral binding mechanism. Specifically, the principal component analysis (PCA) and the variational autoencoder (VAE) models are employed, both are classified as dimensionality reduction approaches with different focuses. The results support the molecular dynamics results that the two variants of SARS-CoV-2 bind stronger and more stable to the human ACE2 receptor than SARS-CoV virus does. Moreover, stronger bindings also affect the structure of the human receptor, making it fluctuate more, a sensitive feature which is hard to detect using standard analyses. Unexpectedly, it is found that the VAE model can learn and arrange randomly shuffled protein structures obtained from molecular dynamics in time order in the latent space representation.  This result potentially has promising application in computational biomolecules. One could use this VAE model to jump forward in time during a molecular dynamics simulation, and to enhance the sampling of protein configuration space.

Funder

Đại học Quốc gia Hà Nội

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3