Author:
Bich Dao Huy,Nam Vu Hoai,Phuong Nguyen Thi
Abstract
The paper deals with the formulation of governing equations of eccentrically stiffened functionally graded plates and shallow shells based upon the classical shell theory and the smeared stiffeners technique taking into account geometrical nonlinearity in Von Karman-Donnell sense. Material properties are assumed to be temperature-independent and graded in the thickness direction according to a simple power law distribution in terms of the volume fraction of constituents. The shells are reinforced by eccentrically longitudinal and transversal stiffeners made of full metal or full ceramic depending on situation of stiffeners at metal-rich side or ceramic-rich side of the shell respectively. Obtained governing equations can be used in research on nonlinear postbuckling of mentioned above structures. By use of the Galerkin method an approximated analytical solution to the nonlinear stability problem of reinforced FGM plates and shallow shells is performed. The postbuckling load-deflection curves of the shells are investigated and analytical expressions of the upper and lower buckling loads are presented. A comparison of the effectiveness of stiffeners in enhancing the stability of FGM plates and shallow shells is given.
Publisher
Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献