Abstract
This paper is a study of the vibroacoustic behavior of orthotropic laminated composite rectangular plate under a sound wave excitation in thermal environments. An improved analytical procedure has been developed that allows for an efficient solution of the finite composite plate sound transmission problem. A symmetrically orthotropic laminated composite plate is considered. The plate is modeled with classic thin-plate theory and is assumed to be clamped on all four sides. The incident acoustic pressure is modeled as a harmonic plane wave impinging on the plate at an arbitrary angle. The sound transmission loss is calculated from the ratio of incident to transmitted acoustic powers.
Publisher
Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
Reference14 articles.
1. S. H. Ko. Reduction of structure-borne noise using an air-voided elastomer. The Journal of the Acoustical Society of America, 101, (1997), pp. 3306–3312.
2. A. Tadeu and J. Antonio. Acoustic insulation of single panel walls provided by analytical expressions versus the mass law. Journal of Sound and Vibration, 257, (2002), pp. 457–475.
3. A. Tadeu, J. Antonio, and N. Simoes. Acoustic insertion loss provided by single and double steel panels separating an air from a water medium. Acta Acoustica/Acustica, 89, (3), (2003), pp. 391–405.
4. H.-J. Lin, C.-N. Wang, and Y.-M. Kuo. Sound transmission loss across specially orthotropic laminates. Applied Acoustics, 68, (2007), pp. 1177–1191.
5. Y.-M. Kuo, H.-J. Lin, and C.-N. Wang. Sound transmission across orthotropic laminates with a 3D model. Applied Acoustics, 69, (2008), pp. 951–959.