Vibrations of cracked functionally graded beams: General solution and application – A review

Author:

Khiem Nguyen Tien

Abstract

This paper presents a unified approach to vibration analysis of functionally graded beams with transverse open-edge cracks based on the so-called vibration shape obtained as a general solution of vibration equations in the frequency domain. The crack is modeled by a pair of translational and rotational springs of stiffness computed from the crack depth in dependence upon functionally graded material parameters. The frequency-dependent vibration shape functions allow one not only to obtain the closed-form solution of both free and forced vibrations for multiple cracked FGM beams but also to develop the well-known methods such as Transfer Matrix Method or Dynamic Stiffness Method for analysis of FGM framed structures. The proposed theoretical developments have been illustrated by their application for modal analysis and frequency response analysis of multi-span and multistep beams.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Subject

General Medicine

Reference50 articles.

1. J. K. Kottke and R. H. Menning. Detection of a transverse crack in a turbine shaft - the Oak Creek experience. A.S.M.E., Paper 81-JPGC-Pwr-19, (1981).

2. N. Anifantis, N. Aspragathos, and A. D. Dimarogonas. Diagnosis of cracks on concrete frames due to earthquakes by vibration response analysis. In 3rd International Symposium of International Measurements Federation (IMEKO), Moscow, (1983).

3. P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 138, (1990), pp. 381–388.

4. O. S. Salawu. Detection of structural damage through changes in frequency: a review. Engineering Structures, 19, (1997), pp. 718–723.

5. N. Papaeconomou and A. Dimarogonas. Vibration of cracked beams. Computational Mechanics, 5, (2-3), (1989), pp. 88–94.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3