An error compensation controller for milling robots

Author:

Khoi Phan BuiORCID,Hai Ha Thanh,Thuy Tran Minh

Abstract

This paper presents a method of controlling a serial robot for milling by an inverse kinematic controller combined with an outer PD loop (Inverse Dynamics + PD controller), with calibration and compensation of errors in calculating the cutting forces. Because the cutting forces are generated at the time of cutting, at the contact area between the workpiece and the cutting tool, the generalized forces of the cutting forces in the differential equations of motion of robot is always variable and difficult to determine precisely. The cutting forces depend on the cutting mode, the geometric parameters of the cutting layer, the cutting conditions, etc. This study shows an inverse dynamic controller with the outer PD loop and an additional calibration block to compensate the differences between the actual cutting forces and calculated cutting forces (which are caculated by the empirical formula). The cutting forces at each machining time of the calibration block is determined based on the differential equation of motion. The efficiency (convergence time and accuracy) of the proposed controller is evaluated by comparison between the numerical simulation results of the controller with cutting force calibration and the conventional PD controller. In the conventional PD controller, the dynamic model of the robot is assumed to define precisely. The results contribute to design and manufacture the controllers for robotic milling, and to improve the quality of the machined surface.  

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

Subject

General Medicine

Reference8 articles.

1. R. Sharma, P. Gaur, and A. P. Mittal. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Transactions, 58, (2015), pp. 279–291.

2. H. Tang and Y. Li. Feedforward nonlinear PID control of a novel micromanipulator using Preisach hysteresis compensator. Robotics and Computer-Integrated Manufacturing, 34, (2015), pp. 124–132.

3. P. R. Ouyang, J. Acob, and V. Pano. PD with sliding mode control for trajectory tracking of robotic system. Robotics and Computer-Integrated Manufacturing, 30, (2014), pp. 189–200.

4. P. B. Khoi, H. T. Hai, and H. V. Sinh. Collaborative robotic reverse kinematics control in milling machining. In Proceedings of the 10th National Conference on Mechanics, Volume 1. Dynamics and Controls of Machine Mechanics, Hanoi, (2017), pp. 352–361.

5. H. T. Hai, H. V. Sinh, H. H. Hung, and P. B. Khoi. Control in the manipulation space of complex surface forming machining robots. In Collection of scientific works at the National Technical Mechanics Conference, 40th Anniversary of the Institute of Mechanics, Volume 2. Dynamics and Control, Machine Mechanics, Hydraulic Mechanics, Hanoi, (2019), pp. 220–227.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3