Abstract
This paper presents an analytical approach to analyze the nonlinear stability of thin closed circular cylindrical shells under axial compression with material properties varying smoothly along the thickness in the power and exponential distribution laws. Equilibrium and compatibility equations are obtained by using Donnel shell theory taking into account the geometrical nonlinearity in von Karman and initial geometrical imperfection. Equations to find the critical load and the load-deflection curve are established by Galerkin's method. Effects of buckling modes, of imperfection, of dimensional parameters and of volume fraction indexes to buckling loads and postbuckling load-deflection curves of cylindrical shells are investigated. In case of perfect cylindrical shell, the present results coincide with the ones of the paper [13] which were solved by Ritz energy method.
Publisher
Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献