Author:
Hien Vu Quoc,Thinh Tran Ich,Cuong Nguyen Manh,Thanh Pham Ngoc
Abstract
ABSTRACT A new continuous element (CE) formulation has been presented in this paper for the vibration analysis of three joined cross-ply composite conical shells containing fluid. The three joined cross-ply composite conical shells containing fluid can be considered as the general case for joined conical-cylindrical-conical, joined cylindrical-conical-cylindrical, joined cylindrical-conical-conical and joined conical-conical-cylindrical shells containing fluid. Governing equations are obtained using thick shell theory of Midlin, taking into account the shear deflection effects. The velocity potential, Bernoulli’s equation and impermeability condition have been applied to the shell-fluid interface to obtain an explicit expression for fuild pressure. The dynamic stiffness matrix has been built from which natural frequencies have been calculated. The appropriate expressions among stress resultants and deformations are extracted as continuity conditions at the joining section. A matlab program is written using the CE formulation in order to validate our model. Numerical results on natural frequencies are compared to those obtained by the finite element method (FEM) and validated with the available results in other investigations. This paper emphasizes advantages of CE model and the effects of the fluid level, semi-vertex angles and lamination sequences on the natural frequencies of joined composite conical-conical-conical shells.
Publisher
Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献