Synthesis and characterization of micrometer-sized molecularly imprinted spherical polymer particulates prepared via precipitation polymerization

Author:

Wang Jinfang1,Cormack Peter A. G.1,Sherrington David C.1,Khoshdel Ezat2

Affiliation:

1. 1WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK

2. 2Unilever Research, Port Sunlight, Quarry Road East, Bebington, Wirral, CH63 3JW, UK

Abstract

In this paper, the synthesis and characterization of molecularly imprinted spherical polymer particulates prepared via precipitation polymerization is described. The effects of the monomer and initiator concentrations and the solvent on the polymerizations were investigated systematically. Polymer microspheres with narrow size distributions and average diameters up to ca. 10 μm were prepared under optimized polymerization conditions. The morphologies of the microspheres were characterized by nitrogen sorption porosimetry and the molecular recognition properties of representative products evaluated in high-performance liquid chromatography (HPLC) mode. Imprinting effects were confirmed by analyzing the relative retentions of the analytes on imprinted and non-imprinted packed HPLC columns. Finally, two different agitation/mixing methods for precipitation polymerizations were compared. It was found that the use of a low-profile roller housed inside a temperature-controlled incubator had advantages over a rotavapor-based system. Overall, this study has served to highlight the attractiveness of precipitation polymerization for the routine production of molecularly imprinted polymers in a well-defined spherical particulate form via an efficient one-step synthetic process.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference40 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3