Solubility of salts in water: Key issue for crystal growth and dissolution processes

Author:

Koutsoukos Petros G.1,Kofina Aikaterini N.1,Kanellopoulou Dimitra G.1

Affiliation:

1. 1Department of Chemical Engineering, University of Patras and Foundation of Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, GR26504 Patras, Greece

Abstract

The formation of sparingly soluble salts from aqueous solutions and their dissolution has attracted broad research interest. Of particular importance is the formation and transformation of minerals exhibiting polymorphism or encountered in more than one crystalline phase as, for example, in the case of calcium phosphates, formed in biological mineralization and in industrial-scale deposits. Understanding of these processes depends primarily on the equilibrium between the mineral phases considered and the aqueous medium in contact. Precipitation takes place in supersaturated solutions with rates depending on the solution supersaturation. The experimental investigation may reveal mechanistic details if done at sustained supersaturation. The kinetics of crystal growth depends either on surface diffusion or on bulk diffusion, which in turn is controlled by the medium fluid dynamics. In the case of magnesium ammonium phosphate (struvite), the presence of water-soluble organic compounds is responsible for the retardation both of the time needed for the onset of precipitation and for the kinetics of growth of the supercritical nuclei. Dissolution processes are controlled by the same mechanisms. In the case of calcitic marble, the dissolution in alkaline solutions is controlled by surface diffusion. Compounds active at the marble/water interface may in this case be used as protective agents.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference47 articles.

1. In Handbook of Industrial Crystallization;Myerson,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3